SCIENTIFIC BITES®

Cancer research e-learning platform

Unmet medical needs in HER2+ breast cancer

Eva Ciruelos: Hospital Universitario 12 de Octubre de Madrid Maria Vidal: Hospital Clínic de Barcelona

> Medical OncologyDeparment Breast Cancer Unit 12 de octubre Hospital, Madrid HM CIOCC, Madrid Complutense University, Madrid

Early breast cancer

	5-year EFS (%)									
	Stag	ge II	Stag	e III						
	Grade II	Grade III	Grade II	Grade III						
HR-positive HER2-negative	83	71	63	51						
HR-positive HER2-positive	81	69	50	48						
HR-negative HER2-positive	61	66	58	46						
Triple-negative	66	72	38	37						

Tumour biology and prognosis in trastuzumab-treated HER2-positive eBC patients is determined by a number of different risk factors

Biological factors

1. Martei YM & Matro JM. Breast Cancer (Dove Med Press) 2015; 7:337–343; 2. Sparano JA, et al. N Engl J Med 2015; 373:2005–2014; 3. Drukker CA, et al. Int J Cancer 2013; 133:929–936; 4. Zhang S, et al. BMC Cancer 2017; 17:335; 5. Inwald EC, et al. Breast Cancer Res Treat 2013; 139:539–552

Tumour biology and prognosis in trastuzumab-treated HER2-positive eBC patients is determined by a number of different risk factors

Piccart-Gebhart MJ, et al. N Engl J Med 2005; 353:1659–1672; 2. Gianni L, et al. Lancet Oncol 2011; 12:236-244; 3. Slamon D, et al. N Engl J Med 2011; 365:1273-1283; 4. Perez EA, et al. J Clin Oncol 2011; 29:3366-3373

Adjuvant trials : consistent DFS and OS benefit over time with 1 year of trastuzumab

AC, doxorubicin + cyclophosphamide; C, carboplatin; CT, chemotherapy; DFS, disease-free survival; FU, follow-up; H, trastuzumab; OS, overall survival; Pac, paclitaxel; RT, radiotherapy; T, docetaxel.

* Selected from a list of approved regimens consisting of \geq 4 cycles.

 Piccart-Gebhart MJ, et al. N Engl J Med 2005; **353**:1659–1672; 2. Smith I, et al. Lancet 2007; **369**:29–36; 3. Gianni L, et al. Lancet Oncol 2011; 12:236–244; 4. Goldhirsch A, et al. Lancet 2013; 382:1021–1028;
 Cameron D, et al. Lancet 2017; **389**:1195–1205; 6. Slamon D, et al. SABCS 2015 (Abstract S5-04; oral presentation); 7. Perez EA, et al. J Clin Oncol 2011; **29**:3366–3373; 8. Perez EA, et al. J Clin Oncol 2014; **32**:3744–3752; 9. Perez EA, et al. J Clin Oncol 2011; **29**:4491–4497. DFS final analysis (10.3 years' median follow-up)

AC, doxorubicin + cyclophosphamide; C, carboplatin; CT, chemotherapy; DFS, disease-free survival; FU, follow-up; H, trastuzumab; OS, overall survival; Pac, paclitaxel; RT, radiotherapy; T, docetaxel.

* Selected from a list of approved regimens consisting of \geq 4 cycles.

BCIRG 006: DFS in node-positive disease after 10 years' follow-up¹

AC, doxorubicin + cyclophosphamide; C, carboplatin; CT, chemotherapy; DFS, disease-free survival; FU, follow-up; H, trastuzumab; OS, overall survival;

Pac, paclitaxel; RT, radiotherapy; T, docetaxel.

* Selected from a list of approved regimens consisting of \geq 4 cycles.

HERA 11-year FU: DFS events by nodal status with 1 year of adjuvant trastuzumab

HERA 11-year FU: Cumulative incidence of type of DFS event with 1 year of adjuvant trastuzumab

- 2 vs 1 year trastuzumab adjuvant therapy HERA: negative trial
- Adding a second antiHER2 targeted agent
 - ALTTO: negative trial BETH: negative trial
 - Extenet: positive trial Aphinity: positive trial

- · Pendpoint: IDFS at 2 years
- · Secondary endpoints: DFS-DCIS, time to distant recurrence, distant DFS, CNS metastases, overall survival, safety
- · Other analyses: Biomarkers, health outcome assessment (FACT-B, EQ-5D)
- · Stratified by: Nodes 0, 1–3 vs. 4+, ER/PR status, concurrent vs. sequential trastuzumab

ExteNET: 2-year IDFS (ITT population) with extended 'post-adjuvant' neratinib

Chan A, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; **17**:367-377.

Hormone receptor-positive

Hormone receptor-negative

E

Chan A, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; 17:367-377 (supplementary information).

								A to Z Index Follo	w FDA En Es	pañol	
Ľ		Administration						Search FDA			
	=	Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Bio					Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products	

Drugs

Home > Drugs > Drug Approvals and Databases > Approved Drugs

 \mathbf{v}

Approved Drugs

Hematology/Oncology (Cancer) Approvals & Safety Notifications

Drug Information Soundcast in Clinical Oncology (D.I.S.C.O.)

Approved Drug Products with Therapeutic Equivalence Evaluations (Orange Book)

FDA approves neratinib for extended adjuvant treatment of early stage HER2-positive breast cancer

f SHARE 🕑 TWEET 🛛 in LINKEDIN 👩 PIN IT 🛛 🖾 EMAIL 🔒 PRINT

On July 17, 2017, the U.S. Food and Drug Administration approved neratinib (NERLYNX, Puma Biotechnology, Inc.) for the extended adjuvant treatment of adult patients with early stage HER2-overexpressed/amplified breast cancer, to follow adjuvant trastuzumab-based therapy.

Approval was based on the ExteNET trial (NCT00878709), a multicenter, randomized, double-blind, placebocontrolled trial of neratinib following adjuvant trastuzumab treatment. Women (n=2,840) with early-stage HER2positive breast cancer and within two years of completing adjuvant trastuzumab were randomized to receive either neratinib (n=1420) or placebo (n=1420) for one year.

The major efficacy outcome measure was invasive disease-free survival (iDFS) defined as the time between the randomization date to the first occurrence of invasive recurrence (local/regional, ipsilateral or contralateral breast cancer), distant recurrence, or death from any cause, within two years and 28 days of follow-up. After two years, iDFS was 94.2% in patients treated with neratinib compared with 91.9% in those receiving placebo (HR 0.66; 95% CI: 0.49, 0.90, p=0.008).

EMA Recommends Granting a Marketing Authorisation for Neratinib After Re-examining Its Negative Opinion for This Medicine

Press Office

EMA Recommends Granting a Marketing Authorisation for Neratinib After Reexamining Its Negative Opinion for This Medicine

It is indicated in extended adjuvant treatment of adult patients with early stage, hormone receptor positive, HER2-overexpressed/amplified breast cancer

f 🔰 🔤 in 👳

Date: 02 Jul 2018

Topic: Breast cancer / Anticancer agents & Biologic therapy

On 28 June 2018, the European Medicines Agency's (EMA's) Committee for Medicinal Products for Human Use (CHMP), following a re-examination procedure, adopted a positive opinion, recommending the granting of a marketing authorisation for the medicinal product **neratinib** (Nerlynx), intended for the adjuvant treatment of adult patients with breast cancer.

The applicant for this medicinal product is Puma Biotechnology Limited.

On 22 February 2018, the CHMP had originally adopted a negative opinion for Nerlynx for broader use in HER2-positive early breast cancer. At the request of the applicant, the CHMP started a reexamination of its opinion. Following the re-examination, the CHMP adopted a final positive opinion on 28 June 2018, but in a restricted patient population.

Nerlynx will be available as 40-mg film-coated tablets. The active substance of Nerlynx is neratinib, an irreversible pan-ERBB tyrosine kinase inhibitor (ATC code: L01XE45). It blocks mitogenic growth factor signal transduction through covalent, high-affinity binding to the ATP binding site of 3 epidermal growth factor receptors resulting in sustained inhibition of these growth promoting pathways in breast cancers

Primary endpoint: IDFS

Secondary endpoints: IDFS with second non-breast primary cancers included, DFS, OS, RFI, DRFI, safety and HRQoL

Predefined stratification factors: Chemotherapy regimen, HR status, nodal status, geographic region and protocol version (A vs. B)

DRFI, distant relapse-free interval; HRQoL, health-related quality of life; IDFS, invasive DFS; RFI, relapse-free interval.

APHINITY: Pertuzumab-trastuzumab plus chemotherapy significantly increased IDFS rates for HER2-positive eBC in the adjuvant setting

HR for IDFS (95% CI)	Primary Analysis (mFU: 45.4 Mos)	Updated Analysis (mFU: 74.1 Mos)
ITT population	0.81 (0.66-1.00)	0.76 (0.64-0.91)
Lymph node positive	0.77 (0.62-0.96)	0.72 (0.59-0.87)
Lymph node negative	1.13 (0.68-1.86)	1.02 (0.69-1.53)
Hormone receptor positive	0.86 (0.66-1.13)	0.73 (0.59-0.92)
Hormone receptor negative	0.76 (0.56-1.04)	0.83 (0.63-1.10)

IDFS at 6-Yr	Pertuzumab, %	Placebo, %	Absolute Benefit, % (95% CI)		
ITT population	90.6	87.8	2.8 (1.0-4.6)		
Lymph node positive	87.9	83.4	4.5 (1.9-7.1)		
Lymph node negative	95.0	94.9	0.1 (-2.0-2.2)		
Hormone receptor positive	91.2	88.2	3.0 (0.8-5.2)		
Hormone receptor negative	89.5	87.0	2.5 (-0.7-5.6)		

Introduction of new treatment modalities over time has improved recurrence outcomes in the ADJUVANT setting

Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Lancet 2012; 379:432–444;
 2. EBCTCG. Lancet 2015; 386:1341–1352; 3. EBCTCG. Lancet 2005; 365:1687–1717;
 4. Jackisch C, et al. SABCS 2015 (Abstract PD5-01); 5. Slamon D, et al. SABCS 2015 (Abstract S5-04);
 6. Slamon D, et al. N Engl J Med 2011; 365:1273 1283.

Al, aromatase inhibitor; CMF, cyclophosphamide, methotrexate and fluorouracil; HR, hazard ratio; RR, risk ratio.

APT (Tolaney) trial: Adjuvant paclitaxel and trastuzumab for HER2-positive breast cancer at lower risk of recurrence

NOTE: This is a single-arm, single-centre study, so is unable to provide definitive data on treatment benefit

q1w, weekly; q3w, every 3 weeks.

* Loading dose of 4 mg/kg intravenous trastuzumab on Day 1.

 \dagger Radiation and hormonal therapy were initiated after completion of paclitaxel.

‡ Dosing could alternatively be 2 mg/kg intravenous q1w for 40 weeks.

Characteristic	All Treated Patients (N = 406)	Patients With PAM50 Assessed (n = 278)	Patients Without PAM50 Assessed (n = 128)	P*
Age group, years	(n = 100)			
< 50	132 (33)	79 (28)	53 (41)	.02
50-59	137 (34)	101 (36)	36 (28)	
60-69	96 (24)	64 (23)	32 (25)	
≥ 70	41 (10)	34 (12)	7 (5)	
Sex				
Female	405 (100)	277 (100)	128 (100)	1.00
Male	1 (< 1)	1 (< 1)	0 (0)	
Race				
White	351 (86)	242 (87)	109 (85)	.88
Black or African American	28 (7)	17 (6)	11 (9)	
Asian	11 (3)	8 (3)	3 (2)	
Other	16 (4)	11 (4)	5 (4)	
Size of primary tumor, cm				
T1mi (≤ 0.1)	9 (2)	1 (< 1)	8 (6)	< .00
T1a (0.1 to ≤ 0.5)	68 (17)	29 (10)	39 (30)	
T1b (> 0.5 to ≤ 1.0)	124 (31)	81 (29)	43 (34)	
T1c (> 1.0 to ≤ 2.0)	169 (42)	137 (49)	32 (25)	
T2 (> 2.0 to ≤ 3.0)	36 (9)	30 (11)	6 (5)	
Histologic grade				
E Well differentiated	44 (11)	26 (9)	18 (14)	.02
II: Moderately differentiated	131 (32)	88 (32)	43 (34)	
III: Poorly differentiated	228 (56)	164 (59)	64 (50)	
Unknown	3 (1)	0 (0)	3 (2)	
ER status				
Positive	260 (64)	188 (68)	72 (56)	.03
Negative	141 (35)	88 (32)	53 (41)	
Borderline	5 (1)	2 (1)	3 (2)	
PR status				
Positive	201 (50)	150 (54)	51 (40)	.02
Negative	196 (48)	123 (44)	73 (57)	
Borderline	8 (2)	5 (2)	3 (2)	
Unknown	1 (< 1)	0 (0)	1 (1)	
HR status				
Positive	272 (67)	196 (70)	76 (59)	.03

82 (30)

52 (41)

134 (33)

Negative

APT (Tolaney) trial: Trastuzumab plus paclitaxel is effective in the treatment of patients at low risk of recurrence

TABLE 3. Estimated 3-Year, 5-Year, and 7-Year Rates for RFI, BCSS, and OS

	RFI					BCSS	05			
Time (years)	No. of Events	No. at Risk	Rate (95% CI)	No. of Events	No. at Risk	Rate (95% CI)	No. of Events	No.at Risk	Rate (95% CI)	
3	3	378	99.2 (98.4 to > 99.9)	0	386	-	1	386	99.7 (99.2 to > 99.9)	
5	7	347	98.1 (96.8 to 99.5)	1	362	99.7 (98.1 to > 99.9)	5	362	98.7 (97.5 to 99.8)	
7	9	120	97.5 (95.9 to 99.1)	3	127	98.6 (97.0 to > 99.9)	14	127	95.0 (92.4 to 97.7)	

Abbreviations: BCSS, Breast Cancer-Specific Survival; OS, overall survival; RFI, Recurrence-Free Interval.

A randomized (3:1), open-label phase II study

Stratified by age (<55, \geq 55), planned radiation therapy (Y/N), planned hormonal therapy (Y/N)

Study not powered to assess efficacy of TH or to compare efficacy of T-DM1 to TH

Coprimary endpoints: 3-yr DFS in T-DM1; comparison of incidence of clinically relevant toxicities with

T-DM1 vs TH, including: grade \geq 3 non-hematologic AEs, grade \geq 2 neurotoxicity, grade \geq 4 hematologic AEs, febrile neutropenia, and any AE requiring dose delay or discontinuation of protocol therapy

Characteristic, n (%)	T-DM1 (n = 383)	TH (n = 114)		
Fatigue	84 (22)	26 (23)		
Neuropathy	44 (11)	27 (24)		
Neutropenia	13 (3)	15 (13)		
Thrombocytopenia	43 (11)	1 (1)		
Nausea	39 (10)	8 (7)		
Hypertension	35 (9)	7 (6)		
ALT increase	33 (9)	5 (4)		
Headache	24 (6)	4 (4)		
Bilirubin increase	21 (5)	1 (1)		
Infusion related reaction	19 (5)	12 (11)		
Arthralgia	18 (5)	2 (2)		
Anemia	18 (5)	2 (2)		
Congestive heart failure, symptomatic	3 (0.8)	1 (0.9)		
Asymptomatic decline in LVEF of \geq 15%	5 (1.3)	7 (6.1)		

Tolaney. SABCS 2019. Abstr GS1-05.

Neoadjuvant therapy

pCR in breast cancer	The definition of pCR can vary ¹					
	Commonly called	TMN code	Definition			
 pCR is the absence of cancerous cells in resected breast tissue or lymph node 	Breast pCR (bpCR)	ypT0/is ypN0/+	Absence of invasive cancer in breast (irrespective of ductal carcinoma <i>in situ</i>). Invasive disease in lymph nodes is permitted			
 specimens¹ tpCR is the most widely accepted definition of pCR in clinical practice^{3,4} 	Total pCR (tpCR)	ypT0/is ypN0	Absence of invasive cancer in breast and axillary nodes (irrespective of ductal carcinoma <i>in situ</i>)			
	German Breast Group (GBG) pCR	урТО урNO	Absence of invasive cancer and in situ cancer in breast and axillary nodes			

 von Minckwitz G, et al. J Clin Oncol 2012; 30:1796–1804; 2. Roche. Data on file. Protocol BO27938 (KATHERINE) – version 6; 3. Cortazar P, et al. Lancet 2014; 384:164–172;
 Stebbing J, et al. Expert Rev Anticancer Ther 2018; 18:531-541. CTNeoBC meta-analysis: EFS benefit after pCR was more pronounced in HER2-positive, HR-negative tumours

HER2-positive, HR-negative

HER2-positive, HR-positive

HOSPITALES

Increased pCR rates with trastuzumab added to chemotherapy resulted in improved EFS, but 42% of patients had relapsed at 5 years

pCR in the breast*

pCR in the breast by HR status*

CI, confidence interval; P, pertuzumab; pCR, pathological complete response.

* NeoSphere: chemotherapy was given following surgery.

	РНТ	нт	Events n		5-y PFS ra	rear ate (%)
Subgroup	better	better	(%)	HR (95% CI)	РНТ	нт
OVERALL (n = 214)	+	T	36 (17)	0.69 (0.34–1.40)	86	81
tpCR (n = 65)	I		10 (15)	0.63 (0.17–2.38)	88	81
No tpCR (n = 149)	⊢-■	-1	26 (17)	0.74 (0.32–1.70)	84	81
HR-positive (n = 100)	⊢∎		14 (14)	0.86 (0.27–2.75)	86	87
HR-negative (n = 114)	⊢-	-	22 (19)	0.60 (0.24–1.48)	85	75
tpCR/HR-positive (n = 17)			2 (12)	- (-)	91	80
tpCR/HR-negative (n = 48)			8 (17)	0.78 (0.17–3.47)	87	81
No tpCR/HR-positive (n = 83)	⊢		12 (14)	0.93 (0.26–3.34)	85	88
No tpCR/HR-negative (n = 66)			14 (21)	0.51 (0.13–1.97)	83	73
	0.1 1	1	10			
	н	R				

Both tpCR and

non-tpCR patients are at risk of relapse:

 In patients with no tpCR following PHT, 16% had relapsed after 5 years vs. 12% in those who did achieve tpCR

NeoSphere; TRYPHAENA: Improved neoadjuvant outcomes with dual anti-HER2 therapy with pertuzumab plus trastuzumab

FDA approved. 29th June 2020

* Neoadjuvant systemic treatment was given for at least 6 cycles, with a total duration of at least 16 weeks, including at least 9 weeks of anti-HER2 therapy and at least 9 weeks of taxane-based chemotherapy (or, if receiving dose-dense chemotherapy regimens, at least 8 weeks of taxane-based therapy and at least 8 weeks of anti-HER2 therapy).
† Dual anti-HER2 therapy was also permitted in the neoadjuvant setting.

TDM1 reduced the risk of an IDFS event by 50% compared with Trastuzumab at a median follow-up of 41 months:

TDM1 increased the 3-year IDFS rate from 77.0% to 88.3%

The majority of recurrences were distant, with a reduced incidence in the TDM1 arm

* Patients who experience additional IDFS event(s) within 61 days of their first IDFS event are reported in the category according to the following hierarchy:
 1. Distant recurrence;
 2. Locoregional recurrence;
 3. Contralateral breast cancer;
 4. Death without prior event.CNS, central nervous system; IDFS, invasive disease-free survival. von Minckwitz G, et al. N Engl J Med; submitted.

* Up to three formal interim OS analyses and one final OS analysis are planned. Data here represent the first interim OS analysis; the final OS analysis will be performed at the end of 10 years of follow-up. CI, confidence interval; HR, hazard ratio; OS, overall survival. von Minckwitz G, et al. N Engl J Med; submitted.

	Trastuzumab n = 743	TDM1 n = 743		
	IDFS events, % (nu	mber of patients)		
Prior Trastuzumab only	23.7 (141/596)	13.0 (78/600)		
	HR 0.489 (95% C	l = 0.371, 0.645)		
	3-year I	DFS, %		
	75.9	87.7		
Prior Pertuzumab–Trastuzumab	IDFS events, % (number of patients)			
	17.3 (24/139)	9.0 (12/133)		
	HR 0.498 (95% C	l = 0.249, 0.995)		
	3-year I	DFS, %		
	80.9	91.4		

This exploratory analysis shows that TDM1 gave a consistent magnitude of IDFS benefit regardless of prior HER2-directed therapy*

* Caution must be exercised as this exploratory analysis involves low patient numbers and the study is not powered to determine the statistical significance of these data. CI, confidence interval; HR, hazard ratio; IDFS, invasive disease-free survival. von Minckwitz G, et al. N Engl J Med; submitted.

Higher incidence of toxicities in TDM1 arm

* Grade ≥3 haemorrhage rates: 0.4% Kadcyla arm, 0.3% Herceptin arm. One fatal intracranial haemorrhage was reported in the Kadcyla arm. AE, adverse event. Geyer Jr. CE, et al. SABCS 2018; abstract GS1-10.

De-escalating neoadjuvant therapy: Biological heterogeneity

Trial	HER2 Inhibition	pCR in ER-positive	pCR in ER-negative
NeoSphere ¹	Per/Tras	26%	63%
NeoALTTO ²	Lap/Tras	42%	61%
CALGB 406013	Lap/Tras	42%	77%
NSABP B-41 ⁴	Lap/Tras	56%	73%
TRYPHAENA ⁵	Per/Tras	46-50%	65-84%
TRAIN-2 ⁶	Per/Tras	51-55%	84-89%

1. Gianni L, et al. Lancet Oncol 2012. 2. Baselga J, et al. Lancet 2012 and de Azambuja E, et al. Lancet Oncol 2014. 3. Carey LA, et al. J Clin Oncol 2016. 4. Robidoux A, et al. Lancet Oncol 2013. 5. Schneeweiss A, et al. Ann Oncol 2013. 6. van Ramshorst MS, et al. ASCO 2017 Abstract 507

(13 studies – 2,087 patients)

	NOAH ¹ (Prat, CCR 2014)	NeoALTTO ² (Fumagalli , JAMA Oncol 2016)	CALGB ³ 40601 (Carey, JCO 2016)	CherLOB ⁴ (Dieci , Ann Oncol 2018)	(Pernas, SABCS 2017)	OPTIHER ⁶ (Gavilá, BMC Med 2019)	KRISTINE ⁷ (Prat, SABCS 2017)	KRISTINE ⁷ (Prat, SABCS 2017)	Swain , (Swain , Oncol 2018)	B41⁹ (Swain, ASCO 2018)	PAMELA ¹⁰ (Llombart- Cussac, Lancet Oncol 2017)	TBCRC ¹¹ 006/023 (Prat, ASCO 2018)	PER- ELISA ¹² (Guarneri, ASCO 2018)
Therapy	AT +H	T +L/H/LH	T +L/H/LH	AT +L/H/LH	AT +H	AT +H+P	T-DM1 +P	DC +H+P	AT +H+P	AT +L/H/LH	L+H (18w)	L+H/L+H (12w/12 vs 24w)	H+P+Le
N	63	254	265	64	154	58	183	171	294	276	151	114	40
Variable	pCR _{BA}	pCR _B	pCR_{B}	pCR _{BA}	pCR _{BA}	pCR _{BA}	pCR _{BA}	pCR _{BA}	pCR _{BA}	pCR _{BA}	pCR _B	pCR _B	pCR _{BA}
pCR in HER2-E	52.9%	52.0%	65.8%	50.0%	63.4%	83.3%	62.2%	72.1%	74.2%	60.9%	41%	27.4%	45.5%
pCR in non-HER2-E	34.5%	21.5%	31.1%	17.0%	26.2%	46.43%	26.9%	32.8%	26.9%	25.7%	10%	9.8%	13.8%
P-value	0.014	<0.001	<0.001	0.008	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	0.034	0.042
Mean pCR 57.7% Mean pCR in 24.8% No Chemo													

NOAH: Prat et al. Clin Cancer Res. 2014 Jan 15;20:511-21 NeoALTTO: Fumagalli et al. JAMA Oncol. 2016.3824 CALGB: Carey et al. J Clin Oncol. 2016;34:542-9 CherLOB: Dieci et al. Ann Oncol. 2016;27:1867-73 ICO+CLINIC: Pernas et al. San Antonio Breast Cancer Symposium 2017; P2-09-11 OPTIHER: Gavilá et al. San Antonio Breast Cancer Symposium 2017; P2-09-04 KRISTINE: Prat et al. San Antonio Breast Cancer Symposium 2017; P2-09-04 BERENICE: Swain et al. Annals of Oncology 29: 646–653 PAMELA: Llombart-Cussac et al. Lancet Oncol. 2017;18:545–54 TBCRC006/023: Prat et al. J Clin Oncol 2018;36 (Supplement abstract 509) Per-ELISA: Guarneri et al. J Clin Oncol 2018;36 (Supplement; abstract 507)

- Around 20% of patients will relapse despite adjuvant treatment
- There are NOT "chemo-free" schemes for fragile population
- Identify high risk populations candidate for a more intensive treatment
 - Biological Heterogeneity: diversity of response to neoadjuvant treatment
 - identify populations with a different sensitivity
 - adapt adjuvant treatment
 - * in pCR* in residual disease

Advanced breast cancer

1. Urriticoechea A et al; JCO 2017 35, (26) 3030-3038; 2. Dzimitrowicz H. et al; JCO 2016; 34(29):3511-3517; 3.Báez-Vallecillo L et al SABCS 2016 P4-21-20; 4. Arpino G et al SABCS 2016 abstract S3-04; 5. Gradishar et al ASCO 2017 abstract 1004

l≡Ì

1. Urriticoechea A et al; JCO 2017 35, (26) 3030-3038; 2. Dzimitrowicz H. et al; JCO 2016; 34(29):3511-3517; 3.Báez-Vallecillo L et al SABCS 2016 P4-21-20; 4. Arpino G et al SABCS 2016 abstract S3-04; 5. Gradishar et al ASCO 2017 abstract 1004

l≡Ì

Advanced HER2+ Breast Cancer : Predictive Biomarkers ?

Adapted from Gingras I et al; Nature Reviews clinical Oncology 2017

Adapted from Gingras I et al; Nature Reviews clinical Oncology 2017

- Around 20% of patients will relapse despite adjuvant treatment
- There are NOT "chemo-free" schemes for fragile population
- Identify high risk populations candidate for a more intensive treatment
 - Biological Heterogeneity: diversity of response to neoadjuvant treatment
 - identify populations with a different sensitivity
 - adapt adjuvant treatment

* in pCR* in residual disease

ADVANCED BREAST CANCER

- IT IS STILL AN INCURABLE DISEASE
- There are NOT "chemo-free" schemes for fragile population / luminal subtype / de-escalating
- Lack of evidence in phase III studies according to previous treatment
- Special clinical situations: metastasis in CNS
- Toxicity: Cardiac

Biological Heterogeneity

SCIENTIFIC BITES®

Cancer research e-learning platform

Thank you

